187 research outputs found

    Protoplanetary gas disks in the far infrared

    Full text link
    The physical and chemical conditions in young protoplanetary disks set the boundary conditions for planet formation. Although the dust in disks is relatively easily detected as a far-IR photometric ``excess'' over the expected photospheric emission, much less is known about the gas phase. It seems clear that an abrupt transition from massive optically thick disks (gas-rich structures where only ~1% of the total mass is in the form of dust) to tenuous debris disks almost devoid of gas occurs at ~10^7 years, by which time the majority of at least the giant planets must have formed. Indeed, these planets are largely gaseous and thus they must assemble before the gas disk dissipates. Spectroscopic studies of the disk gas content at different evolutive stages are thus critical. Far-IR water vapor lines and atomic fine structure lines from abundant gas reservoirs (e.g., [OI]63um, [SI]56um, [SiII]34um) are robust tracers of the gas in disks. Spectrometers on board Herschel will detect some of these lines toward the closest, youngest and more massive protoplanetary disks. However, according to models, Herschel will not reach the required sensitivity to (1) detect the gas residual in more evolved and tenuous transational disks that are potentially forming planets and (2) detect the gas emission from less massive protoplanetary disks around the most numerous stars in the Galaxy (M-type and cooler dwarfs). Both are unique goals for SPICA/SAFARI. Besides, SAFARI will be able to detect the far-IR modes of water ice at ~44 and ~62um, and thus allow water ice to be observed in many protoplanetary systems and fully explore its impact on planetary formation and evolution.Comment: To appear in Proc. Workshop "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies". Eds. A.M. Heras, B. Swinyard, K. Isaak, and J.R. Goicoeche

    Physics based calibration of the Herschel/SPIRE bolometers

    Get PDF
    The bolometers (and readout circuitry) in the SPIRE instrument on the Herschel Space Observatory are among the best understood and well characterised of any sub‐mm astronomy instrument to date. SPIRE contains five arrays of NTD germanium spiderweb bolometers with up to 139 pixels per array. Their behaviour has been shown to be extremely stable as seen by repeated measurements in the years between initial array level and final instrument level tests, and can be described extremely well by a simple physical model (the ideal bolometer model). Calibration of the bolometers must take into account the non‐linear response when viewing bright sources, and the effect of fluctuations in the heat sink temperature. The simple and well‐understood behaviour of the detectors, coupled with the stable conditions expected in flight, mean that in contrast to previous sub‐mm instruments, physical models can be used to improve or possibly replace empirical calibration methods. We describe how this can be done, and use the large amount of data from ground measurements to show that we can use models to accurately calculate the absolute power detected by the bolometers

    η\eta Carinae's Dusty Homunculus Nebula from Near-Infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity

    Get PDF
    Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η\eta Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the Great Eruption. We present the 2.4 - 670 ÎŒ\mum spectral energy distribution, constructed from legacy ISO observations and new spectroscopy obtained with the {\em{Herschel Space Observatory}}. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions which are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 ÎŒ\mum feature. Our preferred model contains nitrides AlN and Si3_3N4_4 in low abundances. Dust masses range from 0.25 to 0.44 M⊙M_\odot but Mtot≄M_{\rm{tot}} \ge 45 M⊙M_\odot in both cases due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a 5"" ×\times 7"" central region. An additional compact feature is detected at 390 ÎŒ\mum. We obtain LIRL_{\rm{IR}} = 2.96 ×\times 106^6 L⊙L_\odot, a 25\% decline from an average of mid-IR photometric levels observed in 1971-1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25-40\% of optical and UV radiation to escape from the central source. We also present an analysis of 12^{12}CO and 13^{13}CO J=5−4J = 5-4 through 9−89-8 lines, showing that the abundances are consistent with expectations for CNO-processed material. The [12^{12}C~{\sc{ii}}] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures.Comment: Accepted in Ap

    Understanding the Herschel-SPIRE bolometers

    Get PDF
    Bolometers are very simple devices. In principle, the behaviour of a bolometer can be described by a simple model along with a small number of parameters. The SPIRE instrument for the Herschel Space Observatory contains five arrays of NTD germanium spiderweb bolometers containing up to 139 pixels. We show from characterisation measurements on the ground using the flight read-out system that the bolometers follow the ideal model extremely well, are very stable, and that the read-out system is sufficiently well behaved to take advantage of this. Calibration should be greatly simplified by being able to take advantage of this behaviour

    A Demonstration of Spectral and Spatial Interferometry at THz Frequencies

    Full text link
    A laboratory prototype spectral/spatial interferometer has been constructed to demonstrate the feasibility of the double Fourier technique at Far Infrared (FIR) wavelengths (0.15 - 1 THz). It is planned to use this demonstrator to investigate and validate important design features and data processing methods for future astronomical FIR interferometer instruments. In building this prototype we have had to address several key technologies to provide an end-end system demonstration of this double Fourier interferometer. We report on the first results taken when viewing single slit and double slit sources at the focus of a large collimator used to simulate real sources at infinity. The performance of the prototype instrument for these specific field geometries is analyzed to compare with the observed interferometric fringes and to demonstrate image reconstruction capabilities.Comment: Accepted for publication in Applied Optic

    Characterisation of Herschel-SPIRE flight model optical performances

    Get PDF
    The Spectral and Photometric Imaging Receiver (SPIRE) is one of three scientific instruments on ESA's Herschel Space Observatory. This long wavelength instrument covers 200 to 670ÎŒm with a three band photometric camera and a two band imaging Fourier Transform Spectrometer (IFTS). Following first results reported in a previous paper, we discuss the in-band optical performances of the flight model as measured extensively during several dedicated test campaigns. Complementary to the experimentally probed spectral characteristics of the instrument detailed in an accompanying paper (see L.D. Spencer et al., in these proceedings), attention is focused here on a set of standard but key tests aimed at measuring the spatial response of the Photometer and Spectrometer end-to-end optical chain, including detector. Effects of defocus as well as source size extent, in-band wavelength, and polarization are also investigated over respective Photometer and Spectrometer field-of-views. Comparison with optical modelling, based on instrument design knowledge and some of the internal component measured characteristics, is performed. Beyond the specific characterisation of each effect, this allows estimating in each band where optical behaviour and detector behaviour respectively dominates and also reconstructing some of the contributors to the instrument throughput. Based on this analysis, retrieved optical performances are finally assessed against the related science-driven instrument requirements

    Generation of an optimal target list for the Exoplanet Characterisation Observatory (EChO)

    Get PDF
    The Exoplanet Characterisation Observatory (EChO) has been studied as a space mission concept by the European Space Agency in the context of the M3 selection process. Through direct measurement of the atmospheric chemical composition of hundreds of exoplanets, EChO would address fundamental questions such as: What are exoplanets made of? How do planets form and evolve? What is the origin of exoplanet diversity? More specifically, EChO is a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planetary sample within its four to six year mission lifetime. In this paper we use the end-to-end instrument simulator EChOSim to model the currently discovered targets, to gauge which targets are observable and assess the EChO performances obtainable for each observing tier and time. We show that EChO would be capable of observing over 170 relativity diverse planets if it were launched today, and the wealth of optimal targets for EChO expected to be discovered in the next 10 years by space and ground-based facilities is simply overwhelming. In addition, we build on previous molecular detectability studies to show what molecules and abundances will be detectable by EChO for a selection of real targets with various molecular compositions and abundances. EChO's unique contribution to exoplanetary science will be in identifying the main constituents of hundreds of exoplanets in various mass/temperature regimes, meaning that we will be looking no longer at individual cases but at populations. Such a universal view is critical if we truly want to understand the processes of planet formation and evolution in various environments. In this paper we present a selection of key results. The full results are available online (http://www.ucl.ac.uk/exoplanets/echotargetlist/).Comment: Accepted for publication in Experimental Astronomy, 20 pages, 10 figures, 3 table

    Relative pointing offset analysis of calibration targets with repeated observations with Herschel-SPIRE Fourier-Transform Spectrometer

    Get PDF
    We present a method to derive the relative pointing offsets for SPIRE Fourier-Transform Spectrometer (FTS) solar system object (SSO) calibration targets, which were observed regularly throughout the Herschel mission. We construct ratios of the spectra for all observations of a given source with respect to a reference. The reference observation is selected iteratively to be the one with the highest observed continuum. Assuming that any pointing offset leads to an overall shift of the continuum level, then these ratios represent the relative flux loss due to mispointing. The mispointing effects are more pronounced for a smaller beam, so we consider only the FTS short wavelength array (SSW, 958-1546 GHz) to derive a pointing correction. We obtain the relative pointing offset by comparing the ratio to a grid of expected losses for a model source at different distances from the centre of the beam, under the assumption that the SSW FTS beam can be well approximated by a Gaussian. In order to avoid dependency on the point source flux conversion, which uses a particular observation of Uranus, we use extended source flux calibrated spectra to construct the ratios for the SSOs. In order to account for continuum variability, due to the changing distance from the Herschel telescope, the SSO ratios are normalised by the expected model ratios for the corresponding observing epoch. We confirm the accuracy of the derived pointing offset by comparing the results with a number of control observations, where the actual pointing of Herschel is known with good precision. Using the method we derived pointing offsets for repeated observations of Uranus (including observations centred on off-axis detectors), Neptune, Ceres and NGC7027. The results are used to validate and improve the point-source flux calibration of the FTS.Comment: 17 pages, 19 figures, accepted for publication in Experimental Astronom

    Herschel SPIRE FTS Relative Spectral Response Calibration

    Get PDF
    Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose noise is reduced by a factor of 2-3, with a gain in the overall spectral sensitivity of 23% and 21% for the two detector bands, respectively.Comment: 15 pages, 13 figures, accepted for publication in Experimental Astronom
    • 

    corecore